Jumpform v slipform
Contents |
[edit] Introduction
Jumpform and slipform are both systems of concrete construction that use a self-climbing formwork to construct multi-storey structures, typically building cores and shafts, as well as chimneys and silos. They are both climb-form systems.
In both cases, formwork into which concrete is poured, climbs vertically up the structure being constructed; sometimes this is from power provided by hydraulic rams and electric motors and can mean that craneage is reduced to a minimum. Both systems feature one or more decks or platforms surrounding the construction for workers to carry out the necessary operations as construction proceeds, such as pouring and monitoring concrete compaction, placing reinforcement and finishing the concrete.
Whether slipform or jumpform, the formwork is supported on the concrete that has already been cast below it, so it does not rely on support from other parts of the building; this allows the shaft or core to progress ahead of the rest of the building works.
However, there are important differences between the two systems in terms of operation, speed and the result achieved.
[edit] Jumpform
Typically, jumpform is used on buildings more than five storeys high, although if a fully-climbing system, it can be applied to 20-storeys and more.
Jumpform is characterised by progression in a series of steps or ‘jumps’, progressing to the next section only after the concrete in the previous one has achieved the necessary strength. For example, after a 2m section has been poured and set, the formwork is ‘jumped’ to pour the next 2m section. The system is particularly suited to situations where the resulting joints between jumps will be concealed at every level e.g by the floors of a building.
Jumpform can be very productive, fast and efficient yet minimise the labour required and craneage costs. There are three main type of jumpform:
- Normal – involves formwork that is lifted off by crane and reattached at the next level above.
- Guided – similar to the normal method above but units remain anchored to the structure during the raising operation by crane. This method can be safer and more controlled.
- Self-climbing – this type of jumpform is raised on rails and so does not require a crane.
There could also be trailing platforms and screens that can be used to help workers apply any required finishing to the concrete or retrieve anchors used on the pour below.
Jumpform systems are highly engineered and so can be quickly and accurately adjusted in all planes. However, they depend on the availability of a skilled workforce on site.
[edit] Slipform
Slipform is a continuous pour system involving a self-climbing formwork that supports itself on the core or shaft being constructed, moving slowly over the concrete as it is cast in a continuous, monolithic pour. It can be used to achieve tapered structures with walls of diminishing thickness and is regarded as being more economical when used for structures over seven storeys high.
Slipform typically has three platforms – a lower platform for concrete finishing; a middle platform at the top level of the concrete being poured, and an upper platform for storing materials.
Normally advancing at a rate of around 300mm per hour, slipform can be regarded as a method of vertical extrusion. This can result in a smooth, continuous concrete finish without any joints, an effect which may be required where the finished structure will be visible e.g bridge pylons or a chimneys. However, slipform may entail higher costs due to the required round-the-clock working until the necessary height of structure has been achieved. Like jumpform, it also requires the availability on site of a small, highly-skilled workforce.
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
International Electrician Day, 10 June 2025
Celebrating the role of electrical engineers from André-Marie Amperè, today and for the future.
New guide for clients launched at Houses of Parliament
'There has never been a more important time for clients to step up and ...ask the right questions'
The impact of recycled slate tiles
Innovation across the decades.
EPC changes for existing buildings
Changes and their context as the new RdSAP methodology comes into use from 15 June.
Skills England publishes Sector skills needs assessments
Priority areas relating to the built environment highlighted and described in brief.
BSRIA HVAC Market Watch - May 2025 Edition
Heat Pump Market Outlook: Policy, Performance & Refrigerant Trends for 2025–2028.
Committing to EDI in construction with CIOB
Built Environment professional bodies deepen commitment to EDI with two new signatories: CIAT and CICES.
Government Grenfell progress report at a glance
Line by line recomendation overview, with links to more details.
An engaging and lively review of his professional life.
Sustainable heating for listed buildings
A problem that needs to be approached intelligently.
50th Golden anniversary ECA Edmundson apprentice award
Deadline for entries has been extended to Friday 27 June, so don't miss out!
CIAT at the London Festival of Architecture
Designing for Everyone: Breaking Barriers in Inclusive Architecture.
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.
Licensing construction in the UK
As the latest report and proposal to licence builders reaches Parliament.
Building Safety Alliance golden thread guidance
Extensive excel checklist of information with guidance document freely accessible.
Fair Payment Code and other payment initiatives
For fair and late payments, need to work together to add value.
Pre-planning delivery programmes and delay penalties
Proposed for housebuilders in government reform: Speeding Up Build Out.
High street health: converting a building for healthcare uses
The benefits of health centres acting as new anchor sites in the high street.